For cryptographers, a cryptographic "break" is anything faster than an exhaustive search. Thus, an XSL attack against a 128-bit-key AES requiring 2100 operations (compared to 2128 possible keys) would be considered a break. The largest successful publicly-known brute force attack has been against a 64-bit RC5 key by distributed.net.
Unlike most other block ciphers, AES has a very neat algebraic description.[10] In 2002, a theoretical attack, termed the "XSL attack", was announced by Nicolas Courtois and Josef Pieprzyk, purporting to show a weakness in the AES algorithm due to its simple description.[11] Since then, other papers have shown that the attack as originally presented is unworkable; see XSL attack on block ciphers.
During the AES process, developers of competing algorithms wrote of Rijndael, "...we are concerned about [its] use...in security-critical applications."[12] However, at the end of the AES process, Bruce Schneier, a developer of the competing algorithm Twofish, wrote that while he thought successful academic attacks on Rijndael would be developed someday, "I do not believe that anyone will ever discover an attack that will allow someone to read Rijndael traffic."[13]
On July 1, 2009, Bruce Schneier blogged[14] about a related-key attack on the 192-bit and 256-bit versions of AES, discovered by Alex Biryukov and Dmitry Khovratovich,[15] which exploits AES's somewhat simple key schedule and has a complexity of 299.5. This is a follow-up to an attack discovered earlier in 2009 by Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić, with a complexity of 296 for one out of every 235 keys.[16] Another attack was blogged by Bruce Schneier[17] on July 30, 2009 and released as a preprint[18] on August 3, 2009. This new attack, by Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir, is against AES-256 that uses only two related keys and 239 time to recover the complete 256-bit key of a 9-round version, or 245 time for a 10-round version with a stronger type of related subkey attack, or 270 time for a 11-round version. 256-bit AES uses 14 rounds, so these attacks aren't effective against full AES.
In November 2009, the first known-key distinguishing attack against a reduced 8-round version of AES-128 was released as a preprint.[19] This known-key distinguishing attack is an improvement of the rebound or the start-from-the-middle attacks for AES-like permutations, which view two consecutive rounds of permutation as the application of a so-called Super-Sbox. It works on the 8-round version of AES-128, with a computation complexity of 248, and a memory complexity of 232.
In July 2010 Vincent Rijmen published an ironic paper on "chosen-key-relations-in-the-middle" attacks on AES-128[20]